Towards integrated city observatories for greenhouse gases

Lukas Emmenegger *, Dominik Brunner, Andreas Christen

Samuel Hammer, Werner Kutsch, Claudio D’Onofrio, Emmanuel Salmon, Jia Chen, Markus Eritt, Martial Haeffelin, Leena Järvi, Natascha Kljun, Thomas Lauvaux, Benjamin Loubet, Matthias Mauder, Amewu A. Mensah, Dario Papale, Leonard Rivier, Stavros Stagakis, Alex Vermeulen, Patrick Aigner, Davide Bernasconi, Dominik Brunner, Pauline Buysse, Mali Chariot, Andrea Fischer, Stuart Grange, Joshua Hashemi, Rainer Hilland, Christopher C. Holst, Ville Kasurinen, Simone Kotthaus, Daniel Kühbacher, Ann-Kristin Kunz, Changxing Lan, Olivier Laurent, Morgan Lopez, Andreas Luther, Moritz Makowski, William Morrison, Giacomo Nicolini, Michel Ramonet, Pascal Rubli, Jesse Soininen, Roland Vogt, Adrian Wenzel, Matthias Zeeman, and many others

*Presenting author: Empa, Lukas.Emmenegger@empa.ch
ICOS Cities project

• brings together and evaluates measurement and modelling approaches for monitoring greenhouse gas emission in densely populated urban areas.
• supports the European Green Deal and aims at developing tools and services for cities in support of assessing emission reduction efforts.
Observation strategies

- Comparing techniques
- Identify synergies between approaches and scales
- In three cities (metropolitan, large, mid-size)

1. High-precision tall tower concentrations
2. Roof- and street-level networks
3. Ground-based total column network
4. Tall eddy covariance towers
5. Biogenic process observations
6. Ground-based wind and meteorology
7. Satellite total column observations*
Zurich Observatory
Jul 2022 – Jun 2024

- High-precision background station (2)
- Mid-precision rooftop station (20)
- Low-precision street level station (60)
- Tall-tower eddy covariance (1)
- Doppler wind LIDARs (2)

Legend:
- Built-up area
- Forests
- Agriculture
- Water bodies
Munich Observatory Jan 2023 – Dec 2025

- Total column FTIR station (5)
- Mid-precision rooftop station (20)
- Low-precision street level station (100)
- Tall-tower eddy covariance (1)
- Doppler wind LIDARs (3)

Map showing various stations and their locations.

- Built-up area
- Forests
- Agriculture
- Water bodies
Mid- and low-cost sensors
Biogenic activity – from satellite to local observations

e.g. Sentinel enh. veg. Index (EVI)
Zurich Emission inventory

- 60 source categories
- vector-based (area, line, point sources)
- > 20,000 point sources
- GHG: CO₂, CH₄, N₂O
- AQ: SO₂, NOx, CO, VOC, C₆H₆, PM, NH₃
Simulation of air flow and transport
Tall building as observation point

Collaboration: city police and buildings administration
CO$_2$ emissions observed at the Hardau tower

Footprint (source sensitivity)
average July 2022 – March 2023

Eddy-covariance CO$_2$ emissions
Total column network

Figure by Chen/F. Dietrich
Atmospheric inversion over Paris

Inventory based emissions and CO₂ measurement stations (cyan circles). Inversions were performed for the Greater Paris region (blue line) and IdF region (black line).

Annual fossil fuel CO₂, IdF 2005 to 2021. Blue boxplots are distribution of posterior CO₂ emissions from an ensemble inversion configurations.

Jinghui Lian et al., EGUsphere preprint (2023), doi.org/10.5194/egusphere-2023-401
ICOS Cities

• Concurrent observations with different systems in metropolitan (Paris), large (Munich) and mid-size city (Zurich).
• Exploration of novel and complementing technologies (e.g. low-cost sensor networks, co-species eddy fluxes, 14C fluxes)
• Create a blueprint for independent urban monitoring and attribution of GHG emission reduction efforts.
• The best and most cost efficient strategy will likely depend on local parameters and on local support.
ICOS Cities, aka Pilot Applications in Urban Landscapes - Towards integrated city observatories for greenhouse gases (PAUL), has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101037319

http://www.icos-cities.eu

ICOS_RI #ICOSCities